Introduction to Ratio and Proportion

IMPORTANT

Introduction to Ratio and Proportion: Overview

This topic covers concepts such as Fourth Proportional, Third Proportional, Alternendo, Invertendo, Componendo, Dividendo, Componendo and Dividendo Rule, and Relation Between Extreme Terms and Mean Terms in Statement of Proportion.

Important Questions on Introduction to Ratio and Proportion

MEDIUM
IMPORTANT

If a:b=4:5 find the value of 3a-2b:3a+2b

MEDIUM
IMPORTANT

If 2a+b+4c+2d2a-b-4c+2d=2a-b+4c-2d2a+b-4c-2d, prove that ab=cd.

EASY
IMPORTANT

If 2x+3y2y=74 then by property of  Dividendo, we can write as 

EASY
IMPORTANT

If any four numbers are in proportion and if the second and third term interchange their places, then the four terms are in proportion.

EASY
IMPORTANT

By Alternendo Property, for four numbers a, b, c, d if a:b=c:d, then _____ =b:d.

MEDIUM
IMPORTANT

By Invertendo property, if two ratios are equal, then their inverse ratios are not equal.

EASY
IMPORTANT

If a2+b2c2+d2=abcd, then find the value of a+ba-b in terms of c and d only.

MEDIUM
IMPORTANT

If x+yx-y=ab, then show that x2+xyxy-y2=a2+abab-b2

MEDIUM
IMPORTANT

If y is the mean proportion of x and z then, proved that x2-y2+z2x-2-y-2+z-2=y4

MEDIUM
IMPORTANT

If ab:cd=a+b2:c+d2 then, show that a:b=c:d or, a:b=d:c

MEDIUM
IMPORTANT

a, b, c are in continued proportion, prove that, a:c=a2+ab+b2:b2+bc+c2

MEDIUM
IMPORTANT

a, b, c are in continued proportion, prove that, a:c=a2+b2:b2+c2

MEDIUM
IMPORTANT

If a,b,c,d are in continued proportion, prove that a+b+c2 : b+c+d2=a2+b2+c2 : b2+c2+d2.

HARD
IMPORTANT

If x3+3xy23x2y+y3=a3+3ab23a2b+b3, then xa=yb.

EASY
IMPORTANT

If y+x=3y-x, then x:y=_____

EASY
IMPORTANT

What is the third proportional to 4 & 18?

EASY
IMPORTANT

Put the number in '*' position so that *, 30, 45 are in continued proportion.

EASY
IMPORTANT

The numbers 12, 20, 15 & 25 are in proportion.

MEDIUM
IMPORTANT

If x2+y2=2xy, then x:y=1:2

MEDIUM
IMPORTANT

If x=4aba+b then the value of x+2ax-2a+x+2bx-2b is